
Proximal Gradient Descent.

* 2 Steps of Proximal GD : LSGD -> regularize.
* Application: Ridge Regression-

· Proximal GD solves regularizedIs problems

min1Aw-dlle+ r()
Un : regularies

f(w)
S X : tuning parameter(x

= 0)W-

① Some common "convex regularies"
· Ridge (Tokhonov) : r(w) = IWils=W
· Lasso (1) : U()= 1 WII Wil (notdifferentiable)g) flu)

= 1Aw-dlli+Xr(r)

① Idea : find a SR(W) Sit. Tp() "touches"f(u)

ise solves easier min problem #*

Simpleforseparable regulariesUnhilm.
Crouch mining fas"

minimicgr(n)- f(w) decreases.
=> find . 8(w) s.t. f(w) = gr(w) , In(W")= f(w"*).

Iflies below)

Define Stepsize : 0 < T : Mllop ** >1 Allop
"End a"conea

Consider· f(w) = /ld-Awll + * r(w)
=ll d-Aw"+An"-Awl+ * r(w)

~
/ expand
.

z

An112 + 11 Awl +2 Aw)+(W)
-

C = NAIoIW"WIL EV

-
> C + Allow*roll+ 2Vs (w!2) + Xr(w)

G+ Ellw"-w12 + 2v* (w*n) + xv(w) = gm(w)

Notethat Fr(W) is separable if r(W) separable ->> Gr(w) = Cr+/Wi).
(noWiWj terms)



Solution
. Find wh)= arguin 9m(w),

where. 9h(w)= G2+ E1lW"-wI + 2V* (wEn) + Xr(w)
gn(w) =Gn+ = /w-wI2 + 2v* (wEn) + Xr(w)

=> 29p(w)=n
+() (wWD2TV(Wn)+Xi r().

complete square
= zGz + (EVr + (w" w)

*

(EV+ (wiw)=Ve + Xz(w)
= TCm+ ([Vm+w")=w

*

(GVR+w")-w) - TVnVe +XE(w)
= (z-w)

"

(2 +XTr() + const = 11z"-wIir()+cust
=>W= argmin/w+(

Were z"= TVR+W(l)
= WK+ 2A

*

(d-Aw")
= w
*
-

*

(AWd) which i'dlandneber.
· Sum up : Proximal Gradient Descent alternates #SGD & Regularization
Algorithm. (Proximal GD)

SoWintilitation
z(= w(-z(AW"d) =- original (S GradientDiscent·Etifwhens towbreak .

① Regularization is simple if U(W] separable.
=> if(w)=Zhi(W) , thenWagnh()

whichis scalarminimisations.



Example . (Ridge/Tikhonov inProximal GD)
few)-1ldArli + XIWI

h(wi) = /wik =Zw
?

10LSGD : Z"= w*- -AlAw"d) ↑
2: Regularization:1)argu (Wi +

=>W = Hxz* Solves Foc(i) pr=> thinking towardia



3 LASSO Regression.
(*) Search forsparse solutions.
#) 1 - norm regularization (LASSO)·

Consider.A../] With We = 0 implies & not important
=> If only a few we's are"non-zero"(important).

then we have "sparse
①lo-hormis normIIwIWito] (counting non-zero) as lawlo allwllo

Consider·must 1 w-dl5 .
① Problem : 11 Wo not courex ->> "Computationallyintractable."

· Convex Relaxation gives tractable problem

minw Stld
teast AbsoluteSele

ShrinkageOperator (LASS
W .

- 11 w/ ,=Wwa

And in 15guad : W +Wa

↑
M Now consider"minist.d .

-
"corner"on 1 WIl,
sparse solutions .

IIWI= B
②minwst.Aw=d

.
= "circular" 11WI (lesslikely cornet

norsparse solutions.
· LASSO is a regularized. E problem.

LAsso : milwild sit.Awdsmullaw-dl+ XIw for some X . E.

( milwll, +-d
Lsso . WargminAn-all+XIIm : SparseWL : can havesmall model error; iterative solution

WoptWh
.

method.

Ridge WFargnAn-all+Xwnon-sparseWi ; canhonesmall prediction error ; solve in
11 AWopt-Awell closedform



· LAsso & FeatureSelection .

= angmin11An-dll+ All wil.
10 Selection :Si : /W]: +03 (the non-zeroWri).
2 Am=ZiM]i=Epi/]i
3

:

Debiusing: Sai : itSc] (debins Aby thosehis selectedory LAss.)
& Resolvem

: E=angmin-dIlAAGAd avoids (w/l , shinkage.



3 LsSo & Proximal GD .
· I-regularized L problem canbesolved. by Proximal GD.

mrLw-dI+WIM encourages sparsesoli .
Enim(sminkage).

Apply
" Proximal GD" (since no closeform)

10 z(=WK-Awd) -LSGD
* argun/w+WI

,
- regularization.

· Regularizationstepsinvolves "scalarminimizations"

mulzww/,m
CaseD : Wi = 0 (15 quad)·
-

> min (zi-Wi]W = (wil : 0=2(-Wil+17 = Wi =Eit

S, W =LEXwi
Wi (zi-ext)

Case :Wit (3"quad).
EXT.

=> mn(zWjX(wi Zi
S

So
, W=t

1)

(Zi+EXT)=
Shrinkage

W(zX SoftthresholdGE,
Dil-ExDesignSzi) . Eit , Eitto,Ex



· It altermates Descent &Shunkage.
(softthresholding)

Wa .⑳ GradientDescent
z Shrinkage . (most likelysandW back to 0)
·We


